

PSU 0

PSU 3

3-0

No Fly-Zo

Centralized and Distributed Optimization of AAM Strategic Traffic Management

ERSITY OF MICHIGAN

City

Joseph Kim

PSU 2

Future AAM Demand the Quest for Efficient Management

McKinsey & Company. "Perspectives on advanced air mobility." 2022
 https://www.jobyaviation.com/

٠

AAM Airspace Design ConOps

[1] Bauranov, A, and Jasenka R. "Designing airspace for urban air mobility: A review of concepts and approaches." Progress in Aerospace Sciences 125 (2021): 100726. [2] Undertaking, SESAR Joint. "European ATM Master Plan: Roadmap for the safe integration of drones into all classes of airspace." SESAR Joint Undertaking: Brussels, Belgium (2018). [3] NASA, UTM. "Air Traffic Management for Low-altitude Drones, NA a." SA (NASA), Washington DC, USA (2015).

[4] Le Tallec, Claude, Patrick Le Blaye, and Moustafa Kasbari. "Low Level RPAS Traffic Management (LLRTM) Concept of Operation." 17th AIAA Aviation Technology, Integration, and Operations Conference. 2017. [5] FAA-NextGen, "A New U.S. DOT Volpe Center-FAA Thought Leadership Series. Transformation: Urban Air Mobility Concept of Operations," https://www.volpe.dot.gov/events/transformation-urban-air-mobility-conceptoperations, 2023.

Three Questions in AAM Traffic Management

1. Airspace Sectorization:

Can urban airspace be effectively divided to allow local traffic managers (PSUs/ USSP/ fleet operators) to handle AAM operations?
 As the number of operation increases, robust & efficient AAM flight management will become essential

US Airspace Sectorization

Example: Potential Vertiport Locations in Florida

Three Questions in AAM Traffic Management

2. AAM Route Planning:

How can we efficiently plan AAM routes considering vehicular, infrastructural & operational constraints?
 → vehicle types (i.e., speed & range), service priorities, corridor & vertiport capacities, equity/fairness

Three Questions in AAM Traffic Management

3. Distributed Management:

- How to efficiently generate AAM traffic management solution given the specific demands/ traffic of their regions?
- Can neighboring PSUs/ USSPs coordinate airspace management to ensure smoother AAM operations while maintaining traffic flow capacities?

What Our Research Offers:

- 1. Airspace Sectorization
- 2. Corridor-based Route Planning
- 3. AAM Traffic Flow Management in Single (Centralized) Setting
- 4. AAM Traffic Flow Management in Distributed Settings

Airspace Sectorization

. (Grid size: 5 km)

Edge weight: $w_i = \alpha_1 \cdot \mathcal{G}_i + \alpha_2 \cdot \mathcal{N}_i + \alpha_3 \cdot \mathcal{H}_i + \alpha_4 \cdot Q_i$

Normalized distance between vertiport:

 $\mathcal{G}_i = \frac{max(d_{corridor}) - d_{u,v}}{max(d_{corridor})}$

Connectivity: number of corridors connected to a vertiport

$$N_i = \frac{m_u + m_v}{2 * max(m_{vertiport})}$$

 $\mathcal{H}_i =$

Population similarity factor:

$$\exp\left(-\frac{|p_u - p_v|}{\max(p_u, p_v)}\right)$$

Vertiport capacity similarity factor: $Q_i = \exp\left(-\frac{|c_u - c_v|}{\max(c_u, c_v)}\right)$

Weight Factors:

 $\sum_{i=1}^4 \alpha_i = 1, \quad 0 < \alpha_i < 1$

i.e., [0.55, 0.25, 0.1, 0.1]

What Our Research Offers:

- 1. Airspace Sectorization
- 2. Corridor-based Route Planning
- 3. AAM Traffic Flow Management in Single (Centralized) Setting
- 4. AAM Traffic Flow Management in Distributed Settings

Corridor Design:

• Multiple lanes to accommodate diverse speed for AAM traffic

 $\overrightarrow{k_i} = \frac{dist(i)}{d_s} \cdot h_i$

- Fast/ Medium/ Slow Speed Lane
- Maximum throughput capacity:
- Vertical layering
 - Smooth transition of speeds and altitudes

What Our Research Offers:

- 1. Airspace Sectorization
- 2. Corridor-based Route Planning
- 3. AAM Traffic Flow Management in Single (Centralized) Setting
- 4. AAM Traffic Flow Management in Distributed Settings

Distance-based vs. Weighted/optimized Path Construction

- Dijkstra's Algorithm^[1]
- Explores route planning approaches

X

Spatial Conflict

Methods and Algorithms

-20

What Our Research Offers:

- 1. Airspace Sectorization
- 2. Corridor-based Route Planning
- 3. AAM Traffic Flow Management in Single (Centralized) Setting
- 4. AAM Traffic Flow Management in Distributed Settings

• Vertiport **Spatial Conflict Detection & Temporal Resolution** .2 $\overline{0}$ 5,6 -20 80 100 -20 Spatial Conflict Type ① and ②

Vertiport

Considerations

Take-off/ Landing Vertiport Capacities:

Multi-Lane Bi-directional Corridors:

Regular

Service Priority Types:

Express

<u>Vehicle Types:</u>

Medical

What Our Research Offers:

- Airspace Sectorization 1.
- **Corridor-based Route Planning** 2.
- AAM Traffic Flow Management in Single (Centralized) Setting 3.
- AAM Traffic Flow Management in Distributed Settings 4.

What Our Research Offers:

- 1. Airspace Sectorization
- 2. Corridor-based Route Planning
- 3. AAM Traffic Flow Management in Single (Centralized) Setting
- 4. AAM Traffic Flow Management in Distributed Settings

Objective Function	Consideration
Minimize [departure delay & airborne delay]	<mark>Equity</mark> of Assigning Departure Time
Parame	eters

Min & Max Speed per Vehicle Type	Departure Takeoff & Arrival Landing Capacity Constraint
Departure, Arrival Vertiport Max Capacities	Corridor Capacity Constraints During Operation Time
Each Corridor's Max Capacity	Min & Max Speed Constraints per Vehicle
Scheduled Departure & Arrival Time per Vehicle	Temporal Conflict Resolution Constraints
Cost of Departure Delay & Airborne Delay per Vehicle Type	(# of MIP constraints: 13)

What Our Research Offers:

- 1. Airspace Sectorization
- 2. Corridor-based Route Planning
- 3. AAM Traffic Flow Management in Single (Centralized) Setting
- 4. AAM Traffic Flow Management in Distributed Settings

Distributed AAM Traffic Management:

- Offers scalability, ensuring the safe and efficient operation of numerous AAM vehicles
- Locally optimizes traffic solutions and coordinates /resolves conflicts for vehicles transitioning through multiple PSUs
- **1.4 to 30 times faster** than centralized AAM traffic management

with each operational time window

Monte Carlo Simulation Setup

	Volocity	Joby Aviation	Beta Technologies
Range [km]	35 ~ 65	240	500
Min. Cruise Speed* [km/hr]	30	100	100
Ideal Cruise Speed [km/hr]	90	320	270
Seating Capacity	2	4	4

Artificial Map Construction Parameters Min/ Max 26/967 **Town Population** 5~15 Concurrent **TLOF** Capacity **Directional Corridor** 60 km Max Length **Directional Corridor** 50 m Geofence Width **PSU Sectorization Weights** [0.55, 0.25, 0.1, 0.1] $\alpha_1, \alpha_2, \alpha_3, \alpha_4$

AAM Flight Operation Parameters		
Operation Time Window	4 hr	
Scheduled Departure Time Interval	5 min	
t_s	30 sec	
Vehicle Type Distribution Ratio	Type 1, 2, 3: [1/3, 1/3, 1/3]	
Service Priority Percentage per Vehicle Type	Type 1, 2, 3: [50%, 40%, 10%]	
PSU Bargain Power Weight eta_1,eta_2,eta_3	[0.3, 0.45, 0.25]	

150 Flights

300 Flights

As the number of flights increases, distributed system performs better than centralized system in terms of runtime!

As the number of flights increases, objective cost remained almost the same!

150 Flights

Why AAM Matters to Me

1

An **RTX** Business

The University of Texas at Austin Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering

12 SYS LAB

LATTICE

Acknowledgement

UNIVERSITY of MICHIGAN
COLLEGE of ENGINEERING

Thank you, everyone

Backup Slides

What Our Research Offers

The Near-Future of AAM and Challenges

In 2030, passenger advanced-air-mobility operators could rival today's largest airlines in flights per day and fleet size.

[1] Urban Air Mobility (UAM) Market Research Report: By Aircraft Type, Range, Operation Type - Global Industry Analysis and Growth Forecast to 2030, P&S Intelligence, 2020 [2] Drone Analytics Market Research Report, P&S Intelligence, 2021

[3] McKinsey & Company. "Perspectives on advanced air mobility." 2022.

Research Focus

Price, George, et al. "Urban air mobility operational concept (OpsCon) passenger-carrying operations." (2020).
 Goodrich, Kenneth H., and Colin R. Theodore. "Description of the NASA urban air mobility maturity level (UML) scale." AIAA Scitech 2021 forum. 2021.

What Our Research Offers:

- 1. Airspace Sectorization
- 2. Corridor-based Route Planning
- 3. AAM Traffic Flow Management in Single (Centralized) PSU Setting
- 4. AAM Traffic Flow Management in Distributed PSU Settings

Spatial Conflict Detection & Temporal Conflict Detection

 $B_{m,i} > E_{n,j} + t_s \quad or \quad B_{n,j} > E_{m,i} + t_s$

Centralized AAM Traffic Management

Set		Parameters		
\mathcal{F}	Set of flights	a_f	scheduled arrival time of AAM flight f	
V	Set of vertiports	d_f	scheduled departure time of AAM flight f	
${\mathcal D}$	Set of departure vertiports	$l_{f,k}$	minimum time that AAM flight f takes to travel through corridor k	
Я	Set of arrival vertiports	$u_{f,k}$	maximum time that AAM flight f takes to travel through corridor k	
С	Set of corridors	a_f	scheduled arrival time of AAM flight f	
0	Set of flight operation time	S _f	service priority of AAM flight f	
S	Set of spatially conflicted flight corridors	t_s	safety separation time of spatially conflicted flight pairs	
		ϵ	delay equity weight	
		γ	cost ratio of airborne delay to departure delay	
Decision V	Decision Variables		take-off capacity at vertiport v at time t	
Weparture	1: if AAM flight f leaves at departure vertiport by time t. 0: otherwise.	$\mathcal{L}_{v,t}$	landing capacity at vertiport v at time t	
y arrival	1: if AAM flight f arrives at destination vertiport by time t. 0: otherwise.	\mathcal{M}_k	throughput capacity at corridor k	
w^{k}	1: if AAM flight f arrives at corridor k by time t. 0: otherwise.	$B_{f,i}$	ratio of the conflict region's start point within corridor i relative to its full length, for flight f	
X_c	Binary variable, where $c = (m,n,i,j) \in S$. $X_c = 1$ if AAM flight <i>m</i> exits conflicted corridor <i>i</i> before AAM flight <i>n</i> enters conflicted corridor <i>j</i> . Otherwise, 0.	$E_{f,i}$	ratio of the conflict region's end point within corridor i relative to its full length, for flight f	
<i>x</i> _c	Binary variable, where $c = (m,n,i,j) \in S$. $x_c = 1$ if AAM flight <i>n</i> exits conflicted corridor <i>j</i> before AAM flight <i>m</i> enters conflicted corridor <i>i</i> . Otherwise, 0.			

$$\begin{array}{c} \text{Cost Ratio of Airborne} \\ \text{to Departure Delay} \\ \text{Ferf} \left\{ \sum_{r \in \mathcal{O}} \left\{ \nabla_{r} \left[M \right]_{r} \left\{ 1 - a_{r} \right\}^{1 + e_{r}}, \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{arrival} \right\} \right\} \\ \text{Actual Departure} \\ -\sum_{r \in \mathcal{O}} \left\{ \left\{ \nabla_{r} \left[M \right]_{r} \left\{ 1 - a_{r} \right\}^{1 + e_{r}}, \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{arrival} \right\} \right\} \\ \text{subject to} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{bree} \right\} \leq \mathcal{T}_{r,r} \quad \forall f \in \mathcal{T}, \quad \forall v \in \mathcal{V} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \leq \mathcal{L}_{v,r} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \leq \mathcal{L}_{v,r} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \leq \mathcal{L}_{v,r} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \leq \mathcal{L}_{v,r} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \leq \mathcal{L}_{v,r} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \leq \mathcal{L}_{v,r} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \leq \mathcal{L}_{v,r} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \leq \mathcal{L}_{v,r} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \leq \mathcal{L}_{v,r} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \leq \mathcal{L}_{v,r} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \leq \mathcal{L}_{v,r} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} = \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} = \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{f} \right\} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{arrival} \right\} \\ \sum_{r \in \mathcal{O}} \left\{ w_{f,r}^{arrival} - w_{f,r-1}^{arrival} \right\} \\ \sum_{r \in \mathcal{O}} \left\{ w_{r,r}^{arrival} - w_{r,r-1}^{arrival} + \left\{ w_{r,r}^{arrival} - w_{r,r-1}^{arrival} \right\} \\ \sum_{r \in \mathcal{O}} \left\{ w_{r,r}^{arrival} - w_{r,r-1}^{arrival} + \left\{ w_{r,r}^{arrival} - w$$

Centralized AAM Traffic Management Formulation

Centralized AAM Traffic Management Solutions

(Vertical multi-lane corridor with capacity 1)

Distributed AAM Traffic Management

Decision Variables

- $b_{f,i}$ bargained entry/ exit transition time of AAM flight f in PSU i
- $y_{i,j}^{f}$ payoff $\in [0, 1]$ of AAM flight f traveling through conflicted PSUs i and j
- p_i^f payoff $\in [0, 1]$ of AAM flight f entering/ exiting PSU i

Parameters

- n_i negotiable bargain power of PSU *i* during flight operation time window *O*
- $t_{f,i}$ optimal entry/ exit time of AAM flight f in PSU i from low-level MIP
- $\delta_{i,j}^{f}$ time difference between an AAM flight *f*'s optimal departure from PSU *i* and its optimal arrival at adjacent PSU *j*, where PSUs *i* and *j* are in conflict
- \mathcal{P}_f transition pseudo-vertiport(s) for flight f
- $\mathscr{C}_{f,i}$ total number of corridors AAM flight f travels through inside PSU i
- \mathscr{T}_i total number of transition corridors in PSU i
- \mathscr{S}_i total number of spatially conflicted flight paths inside PSU i
- β_{1-3} bargain parameter weight factors for $\mathscr{C}_{f,i}, \mathscr{T}_i, \mathscr{S}_i$

Key Objectives:		Game Theoretic Approach			
1.		Game Type	Objective	Decision-Making Approach	Example
2.	Corridor-based Route Planning	Cooperative	Maximize total system throughput Minimize overall air delay	Collaborative decisions to optimize corridor usage and	PSUs forming a coalition for joint
3.	3. AAM Traffic Flow Management in Single (Centralized) PSU Setting		winninize overall all delay	anspace enclency	optimization
4.	AAM Traffic Flow Management in Distributed PSU Settings	Non- Cooperative	Maximize individual PSU's throughput Minimize its own airspace delay	Independent decisions by each PSU, optimizing for individual goals	PSUs optimizing airspace without coordination

Distributed AAM Traffic Management Formulation

Cooperative Nash Bargain

Negotiable bargain power of PSU i

Maximize $U_i \cdot U_i$

 $n_i = \beta_1 \cdot \sum_{f=1}^{N} \frac{1}{\mathscr{C}_{f,i}} + \beta_2 \cdot \mathscr{T}_i + \beta_3 \cdot \mathscr{S}_i \qquad \text{AAM traffic density,} \\ \# \text{ of transition corridors,} \end{cases}$ $\sum_{i=1}^{n} \beta_i = 1, \quad 0 < \beta_i < 1$ Weight factors

Transition time equity function

(i.e., "utility function")

subject to $n_i \ge n_i \quad \forall f \in \mathcal{F}, \quad \forall \text{ [conflicted PSU pair (i,j)]}$

 $U_i(y_{i,i}^f) = 1 - y_{i,i}^f$

 $U_j(y_{i,j}^f) = \left(y_{i,j}^f\right)^{\frac{n_i}{n_j}}$

of spatial conflicts

Modified Objective Function

$$\begin{aligned} \text{Minimize} \quad \sum_{f \in \mathcal{F}} \left\{ \sum_{t \in O} \left(\gamma \cdot s_f \cdot (t - a_f)^{1 + \epsilon} \cdot (w_{f,t}^{arrival} - w_{f,t-1}^{arrival}) \right) \\ &- \sum_{t \in O} \left((\gamma - 1) \cdot s_f \cdot (t - d_f) \cdot (w_{f,t}^{departure} - w_{f,t-1}^{departure}) \right) \right\} \end{aligned}$$

Additional Constraint

$$w_{f,b_{f,i}}^{\mathcal{P}_f} + w_{f,b_{f,i}-1}^{\mathcal{P}_f} == 1$$

Relaxed Constraint

$$t \cdot w_{f,t}^{departure} \ge d_f \quad \forall f \in \mathcal{F}, \quad departure \in \mathcal{D}, \quad \forall t \in O$$

Negotiable bargaining power of PSUs varies with each operational time window

Simulation Analysis

Distributed AAM traffic management solution remains largely unaffected by its suboptimality after cooperative negotiation among conflicting PSUs

- As the number of AAM flight increases, more ground & airborne delays are observed

- Distributed system did not incur significantly greater delay than the centralized system

Simulation Analysis

Scalability: computation time has cubic increase for centralized system