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Future AAM Demand the Quest for Efficient Management

Main reason for considering an AAM vehicle, % of respondents, by country’

| would arrive at my destination
more quickly

47
43
41
I i i I 35

M Brazii [ China [l Germany India [ Poland United States

Novelty; It would be fun to fly My arrival time would

be more certain

20 18

15 15 . 15 14 o 17 15 14
min:N mim B

U

[1] McKinsey & Company. "Perspectives on advanced air mobility." 2022

[2] https://www.jobyaviation.com/

B Representative large airline ¥ Representative AAM operator

(2019, mainline only)

~1k

~0.8k

S

%

Fleet size

(early 2030s, estimated number)

~2786k ~23h
~18
~29% min
-_— [
L]
"-T@‘I'o"
Flights per .ﬁverage
day flight time



Airspace

System

Capacity

Automation

Static/ Dynamic
Geofence

Airspace

System

Capacity

Automation

Static/ Dynamic
Geofence

[1] Bauranov, A, and Jasenka R. "Designing airspace for urban air mobility: A review of concepts and approaches." Progress in Aerospace Sciences 125 (2021): 100726.

[2] Undertaking, SESAR Joint. "European ATM Master Plan: Roadmap for the safe integration of drones into all classes of airspace.” SESAR Joint Undertaking: Brussels, Belgium (2018).
[3] NASA, UTM. "Air Traffic Management for Low-altitude Drones, NA a." SA (NASA), Washington DC, USA (2015).
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High

Uncrewed
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Vertical Layer
Separations
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Medium

Uncrewed

v
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AAM Airspace Design ConOps

i DLR

Cells
Centralized
High

Piloted
& Uncrewed

A Boeing Company

Sky-tubes (i.e.,
constant speed)
Decentralized

Medium

Uncrewed

v

ONERA

THE FRENCH AEROSPACE LAB

Vertical Layer
Separations
Centralized

Medium

Manned
& Uncrewed

v

EMBRAER-X
Vertical layers,
Corridors
Centralized

High

Uncrewed

v

FAA Envisioned AAM Architecture

FAA
Industry Data
Exchange Protoco’

Terrain,
Micro-weather,
Obstacles,

Aerodrome
Information

DEVELOPMENT
& DEPLOYMENT

Indust
DEVELOPMENT
& DEPLOYMENT

‘ OPERATOR

UAM

Or“.RATOR,

. PSU: Provider of Services for UAM

*  UAM: Urban Air Mobility (i.e., AAM)

[4] Le Tallec, Claude, Patrick Le Blaye, and Moustafa Kasbari. "Low Level RPAS Traffic Management (LLRTM) Concept of Operation.” 17th AIAA Aviation Technology, Integration, and Operations Conference. 2017.
[5] FAA-NextGen, “A New U.S. DOT Volpe Center-FAA Thought Leadership Series. Transformation: Urban Air Mobility Concept of Operations,” https://www.volpe.dot.gov/events/transformation-urban-air-mobility-conceptoperations, 2023.

*  SDSP: Supplemental Data Service Providers
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Three Questions in AAM Traffic Management

1. Airspace Sectorization:
* Can urban airspace be effectively divided to allow local traffic managers (PSUs/ USSP/ fleet operators) to handle AAM operations?

- As the number of operation increases, robust & efficient AAM flight management will become essential

GEORGIA 0
© Vertiports
Albany @ Savannah @
Atlantic Ocean
Tallahassee @ o Jlandle
Gainesville ®
FLORIDA
:’;-/ . Y N Daytona Beach
/’J ’,"" Orlarido’® ..mpzm
y 4 | AKENONAVERTIPORT
L - [ mmassm ]
® ST
West Paim
AAM tpam
- - - Ft. Myers ®
Airspace Sectorization P Loudorcale @ —
Naples @

@ Miami

US Airspace Sectorization Example: Potential Vertiport Locations in Florida
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Three Questions in AAM Traffic Management

2. AAM Route Planning:
* How can we efficiently plan AAM routes considering vehicular, infrastructural & operational constraints?
-> vehicle types (i.e., speed & range), service priorities, corridor & vertiport capacities, equity/fairness

Corridor transition
Finite take-off/landing pads

Fixed corridor volume

Bi-directional Flight Corridors with Fixed-size Vertiports with Landing Pads



M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN
Slide 6

Three Questions in AAM Traffic Management

3. Distributed Management:
* How to efficiently generate AAM traffic management solution given the specific demands/ traffic of their regions?
* Can neighboring PSUs/ USSPs coordinate airspace management to ensure smoother AAM operations while
maintaining traffic flow capacities?

uTMm/ PSU .

uTM/ PSU

a

@® Vertiport

UTM/PSUl - UTM (UAS Traffic Management)
% PSU (Provider of Services for UAM)

UTM/ PSU

&

UTM/ PSU

Y
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Methods and Algorithms

Detects groups with similar properties

What Our Research Offers:
1. Airspace Sectorization

2. Corridor-based Route Planning
3. AAM Traffic Flow Management in Single (Centralized) Setting

4. AAM Traffic Flow Management in Distributed Settings

Airspace Sectorization

Voronoi Diagram '\

Generate geographic partitioning
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Airspace Sectorization

PSU Airspace Sectorization

Edge weight: wi=a1-Gitar N;+a3-H; +as - Q;

16 —

max(dcr)rrid()r) - du,v

Normalized distance between vertiport: Gi =
 adl \L. ; 1 max(dcorridor)
~ Commercial Community
» 7; (demand) Connectivity: number of corridors connected to a vertiport
13 -19
’ 3 m, +m
z 3 M — u v
> \ 2 % max(mvertiporr)
15

) Population similarity fact W—eXp( Py —pyl )
‘ opulation similarity factor: | = -

<) P y ’ max(py, py)

17,
18

Vertiport capacity similarity factor: Q = exp (_ lcu — ¢y )

Weight Factors: 4

Residential Community 1. 0< <1
a; =1, (07}

(supply)

X ;:]
PSU Airspace Sectorization Example
(Grid size: 5 km) i.e., [0.55,0.25,0.1, 0.1]
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Methods and Algorithms

Corridor Design:

* Multiple lanes to accommodate diverse speed for AAM traffic
What Our Research Offers: * Fast/ Medium/ Slow Speed Lane
1. Airspace Sectorization

*  Maximum throughput capacity:

2. Corridor-based Route Planning T = dist(i)
 Vertical layering I dy I
3. AAM Traffic Flow Management in Single (Centralized) Setting * Smooth transition of speeds and altitudes
4. AAM Traffic Flow Management in Distributed Settings o Multi-Lane Bi-directional Corridors -
Fast-speed Lane -==§:=- -
: Medium-speed Lane /— __________ a
Slow-speed Lane B ’ g ____________ -

Vertiport
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Methods and Algorithms

Distance-based vs. Weighted/optimized Path Construction
- Dijkstra’s Algorithm!!

What Our Research Offers: - Explores route planning approaches

1. Airspace Sectorization

Potential congestion region

2. Corridor-based Route Planning

== == 1 Distance-based path

3. AAM Traffic Flow Management in Single (Centralized) Setting

== mm 1 \Veighted/optimized path

4. AAM Traffic Flow Management in Distributed Settings

[1] Prim, R. C., “Shortest connection networks and some generalizations,” The Bell System Technical Journal, Vol. 36, No. 6, 1957, pp. 1389-1401 X
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Methods and Algorithms

What Our Research Offers:
1. Airspace Sectorization

2. Corridor-based Route Planning
3. AAM Traffic Flow Management in Single (Centralized) Setting

4. AAM Traffic Flow Management in Distributed Settings

Spatial Conflict Detection & Temporal Resolution

Slide 11

B Spatial Conflict
® \Vertiport

140 A

120 4

100 4

80

60

40 A

20

140 -

120 4

100 4

80 1

60 1

20

100

-20

0 20 40 60 80 100

Spatial Conflict Type D and @

Vertiport
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Methods and Algorithms

What Our Research Offers:
1. Airspace Sectorization

2. Corridor-based Route Planning
3. AAM Traffic Flow Management in Single (Centralized) Setting

4. AAM Traffic Flow Management in Distributed Settings

Considerations

Take-off/ Landing Vertiport Capacities:

Multi-Lane Bi-directional Corridors:

Vehicle Types:

Multicopter Vectored Thrust Lift + Cruise

B &

Service Priority Types:

Express Medical
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Methods and Algorithms

What Our Research Offers: Objective Function Consideration
1. Airspace Sectorization Minimize —

[departure delay & un'ty ot ss_ll_.gnlng

. . . eparture Time
2. Corridor-based Route Planning airborne delay] .
3. AAM Traffic Flow Management in Single (Centralized) Setting :
Parameters Constraints
4. AAM Traffic Flow Management in Distributed Settings Min & Max Speed per Vehicle Type Departure Takeoff & Arrival Landing
Capacity Constraint
Departure, Arrival Vertiport Max Capacities Corridor Capacity Constraints During
Operation Time
Each Corridor’s Max Capacity Min & Max Speed Constraints per
Vehicle
Scheduled Departure & Arrival Time per Vehicle Temporal Conflict Resolution

Constraints

Cost of Departure Delay & Airborne Delay per ( # of MIP constraints: 13 )
Vehicle Type
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Methods and Algorithms

Distributed AAM Traffic Management:

What Our Research Offers: .
1. Airspace Sectorization

Offers scalability, ensuring the safe and efficient operation of
numerous AAM vehicles

2. Corridor-based Route Planning  Locally optimizes traffic solutions and coordinates /resolves
conflicts for vehicles transitioning through multiple PSUs

3. AAM Traffic Flow Management in Single (Centralized) Setting

* 1.4 to 30 times faster than centralized AAM traffic management
4. AAM Traffic Flow Management in Distributed Settings
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Methods and Algorithms

AAM traffic density,
number of transition corridors,
number of spatial conflicts

w

High-Level Optimization [Ga heory)

D

Cooperative
Game Theory

Decision Bargaining Powerl(PSU
Variables during operation time
Objective Fair and coordinated Negotiation among
Function Conflicted PSUs
Low-Level Optimization (MIP)
Decision Departure time for each AAM within
Variables each PSU airspace
Objective Minimize overall departure and airborne
Function delay within each PSU airspace

Constraints

Player: Each PSU/ USSP
or
Each sub-regions

_ owned by PSU
Speed, capacity and

temporal conflict resolution

Negotiable bargaining power of PSUs varies
with each operational time window

=

Bi-Level Optimization
Distributed AAM Traffic Management

Low-level Optimization (Mixed Integer Programming)

PSU 1 PSU 2

Y

A

Conflicting Neighboring PSU pairs MIP Constraint Verification

A

Negotiated Entry/Exit Time for Each
AAM Flight in PSUs

,, T

High-level Optimization (Game Theory)

Cooperative Nash Bargaining
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Monte Carlo Simulation Setup

.

:‘ - 9 .
- @ a0 PN
-t . 4 %
. ®
o o
g No Fly Zore
Volocity Joby Aviation Beta Technologies b ‘ £
Range [km] 35~ 65 240 500 /N i
o4 é?7=‘
Min. Cruise Speed* 30 100 100 ‘ 8
[km/hr] ' o
Ideal Cruise Speed 90 320 270 » %p
[km/hr]
Seating Capacity 2 4 4

Artificial Map Construction Parameters

AAM Flight Operation Parameters

Min/ Max
Town Population

Concurrent
TLOF Capacity

Directional Corridor
Max Length

Directional Corridor
Geofence Width

PSU Sectorization Weights
aq, Ay, A3, Ay

26/ 967

5~15

60 km

50m

[0.55, 0.25, 0.1, 0.1]

Operation Time
Window

Scheduled Departure
Time Interval

ts

Vehicle Type
Distribution Ratio

Service Priority Percentage
per Vehicle Type

PSU Bargain Power Weight
B, B2, B3

4 hr

5 min

30 sec

Type 1, 2, 3:
[1/3,1/3,1/3]

Type 1, 2, 3:
[50%, 40%, 10%]

[0.3,0.45, 0.25]

PSU Airspace Sectorization

Slide 16
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Centralized Distributed

as Average Delay by Vehicle Type in Centralized System is Average Delay by Vehicle Type in Distributed System
) 150 Flights | - 150 Flights T ]
300 Flights 300 Flights T . .
201 300 304 % - 300 flights experienced
_ _,.1150 B < more delays than 150
Vehicle Types: g2 g 25 B . y
2 2 202 122 205|212 flights (both C & D)
Multicopter Vectored Thrust Lift + Cruise E—_ 2.01 ‘E 201
= : =
v [ 155
a o J 1.5 H H .
s 15 g 15 - Distributed PSU:
g 1.16 1.19 109 1.19 109 118 g It_ t h th I t
2 10 2 10- 1 -+ multicopter nas e leas
1 ground & airborne delay
0.5 0.5
0.0 . : T 0.0 . . .
1 2 3 1 2 3
1: Multicopter, 2: Viectored Thrst, 3: Lift+Cruise 1: Multicopter, 2: Vectored Thrst, 3: Lift+Cruise
s SAverage Delay by Service Priority Type in Centralized System S5 Average Delay by Service Priority Type in Distributed System
' = 150 Flights _ = 150 Flights
300 Flights T 300 Flights
. . 3.0 4 3.0
Service Priority Types: B . .
s 2 T % - Medical operation has
= E E o q the least ground &
E 204 E2o : .
= = 5 55 i o 177 183 airborne delay
] T
o 154 S s
. = 1.23 2
Regular Express Medical s 112 108 [1.11 L1411 06 ]
Z 104 Z 101 — =
0.51 0.5
0.0 . , . 0.0 4 - . .
1 2 3 1 2 3

-

1: Regular, 2: Express, 3: Medical : Regular, 2: Express, 3: Medical
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150 Flights 300 Flights

Runtime for Centralized and Distributed Systems: 150 Flights Runtime for Centralized and Distributed Systems: 300 Flights

i i
1 1
4.0 1 ! ~ ! .
2T omme .~ 8% decrease » 25 i As the number of flights
| (N --—_____-- 3 i ~ . . .
3 LN - _ 22 N~~.__ ~28% decrease increases, distributed
a 1 \ z 4 N ~~~~-
ER N : 2 LN S~ system performs better
E i E i S Sea . .
2 2] i "\ g, i . = [15'96 than centralized system in
5 2.0 | S 5 i ‘\ terms of runtime!
] I 1.6 7] ]
B 15 ! Im \\ 7 10 ! ‘\ ~97% decrease
. c.;n': : N~ 0, g : hY
Runtime 101 ! \J93% decrease < : n TN
i \ 5 - N
| i 4 i S
0.5 i 0.26 i 4
i I | _074
0.0 T ! T T T T 0 T 1 T T T T
Centralized PSU_O PSU_1 PSU_2 PSU_3 Centralized PSU_O PSU_1 PSU_2 PSU_3
Objective Cost for Centralized and Distributed Systems: 150 Flights Objective Cost for Centralized and Distributed Systems: 300 Flights
i s
30 - .
! 1009 N As the number of flights
25491 I'N'~S . . .
259 MSce. ~noo LSS~ ~46% decrease increases, objective cost
/‘v g SN~ ~48% decrease % 801 T N N .
9 S LN TN e S ! S\ S remained almost the
227 : S g ! ~
g : N Y 8 60- ; KN Ry same!
§ 15 4 i \\\ Ssa s é i ~ . a 52.73
Cost L LR B33 g ! Imj *X_ ~83% decrease
B 1 \ 1
i ~.~83% decrease i M
. ! 4 432 20 - ! :EG.GB
i i
1 1
1 1
0 T ! T T T T 0 T 1 T T T T
Centralized PSU_0 PSU_1 PSU_2 PSU_3 Centralized PSU_0 PSU_1 PsSU_2 PSU_3
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150 Flights 300 Flights

Average Delay Count in Distributed Systems: 150 Flights Average Delay Count in Distributed Systems: 300 Flights

12 4 mm Weighted/Optimized

T Distance-based 35
Potential congestion region
10 A

30 A

mm Weighted/Optimized
Distance-based

- Mixed result: weighted/optimized
L‘ routes did not outperform the

== == 1 Distance-based path I £
2 8- 3 25
w w H
m= =1 Weighted/optimized path 3 3 distance-based routes
[} L v 20
o g4 o o o [m]
8 Weighted/Optimized 2 _ . L
g g1 - Weighted/optimized routes minimize
I 4 . z .. ]
Distance-based 101 the PSU transitions, reducing # of
2 1 . coordination among PSUs
0 0
1 2 3 4 5 6 7 8 9 10 12 15 1 2 3 45 6 7 8 91011 12 13 14 15 16 18
Total Delay Duration for Delayed AAM Flights (minutes) Total Delay Duration for Delayed AAM Flights (minutes)
Spatial Conflicts in Distributed Systems: 150 Flights Spatial Conflicts in Distributed Systems: 300 Flights
1 1
2000 - 1792 BB Weighted/Optimized 8000 7223 B \Veighted/Optimized
6616
1581 [ Distance-based  7qpg 4 [ Distance-based
1750 1
1500 4 6000
w
2 1250 1 5000 7
=
8 832 858 4000 3348 3340
: = 10007 666 gg3 2649 2688 I
m
g I 3000 - :|:
500 4 2000 A
82 93
250 1000 327 352
I T
ol i o =
PSU_O PSU_1 PSU_2 PSU_3 PSU_O PSU_1 PSU_2 PSU_3

Spatial Conflicts / Flight Spatial Conflicts / Flight
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Thank you, everyone
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Major Markets for Urban Air Mobility Services

CAGR: (2023-2(¢

CAGR
40.9%

Market Size in Millions (2030)

=S i)
A ® Consumer
[ y CAGR
\ ~28.7%
Y ‘ Y o

» North America = Latin Amorica

» furope » Fast Avla 1 b 1he moebet betmeen

South Aua & Oceanks  ~ MEA

The Near-Future of AAM and Challenges

Global Urban Air Mobility Market

Europe
us Fastest-Growing Market
Lorgest Market By Region (2023-2030)

By County @023) . ‘\? 2

2023 2030 St

Markot size Market sizo Growth Rate
$895.0  $6,889.4 o oo
milkon million WA

PRESCIENT { STRATEGIC
INTELLIGENCE
N

| —

Market Growth Rote

(2020-2030) “

32.1%

MARKET SIZE
| o0 o
Miflion

[ 230 e

Million

In 2030, passenger advanced-air-mobility operators could rival today’s largest
airlines in flights per day and fleet size.

Large airline compared to advanced-air-
mobility (AAM) operator

@ Representative large airline @ Representative AAM operator
(2019, main line only) (2030, estimated)

Flights Fleet Network Active
per day size nodes pilots per day

Passengers Average Annual
flight time revenue

~18

. . . ~70 000 minutes

Source: Cirium; investor presentations; US Bureau of Transportation Statistics; McKinsey analysis

McKinsey
& Company

[1] Urban Air Mobility (UAM) Market Research Report: By Aircraft Type, Range, Operation Type - Global Industry Analysis and Growth Forecast to 2030, P&S Intelligence, 2020

[2] Drone Analytics Market Research Report, P&S Intelligence, 2021

[3] McKinsey & Company. "Perspectives on advanced air mobility." 2022.
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Research Focus

sesar’

JOINT UNDERTAKING

Flight Planning for low-

Vehicle Development & Production altitude, urban map

{

Airspace Geofencing and

Assured Contingency
Landing Management

Individual Vehicle Management & Operation

Airspace System Design & Implementation

Contingency Management

Contingency
Management

ndividual Vehicle
Operation

Airspace & Network
Management

Individual Vehicle .

Management

Community Integration

Statistically-Guided
Geofence Volume Sizing

Centralized & Distributed
AAM Network

[1] Price, George, et al. "Urban air mobility operational concept (OpsCon) passenger-carrying operations." (2020).
[2] Goodrich, Kenneth H., and Colin R. Theodore. "Description of the NASA urban air mobility maturity level (UML) scale." AIAA Scitech 2021 forum. 2021.
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Methods and Algorithms
Spatial Conflict Detection & Temporal Conflict Detection

What Our Research Offers:
1. Airspace Sectorization == Fly-in direction

140 | i A Fly-out direction
2. Corridor-based Route Planning 120 M Spatial conflict region

100 = /‘ > xE"ri
3. AAM Traffic Flow Management in Single (Centralized) PSU Setting o * %\; o Bmim==

° & »

4. AAM Traffic Flow Management in Distributed PSU Settings \ 1 B'f P’“’\

80
201

45 50 55 60 65

Bm’f > En.,j + IS or BH,J'. > Emgf +f$'
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Centralized AAM Traffic Management
Set Parameters
v Set of flights ar scheduled arrival time of AAM flight f
vV Set of vertiports dy scheduled departure time of AAM flight f
D Set of departure vertiports Ik minimum time that AAM flight f takes to travel through corridor k
A Set of arrival vertiports Uus i maximum time that AAM flight f takes to travel through corridor k
C Set of corridors ag scheduled arrival time of AAM flight f
o Set of flight operation time sf service priority of AAM flight f
S Set of spatially conflicted flight corridors ty safety separation time of spatially conflicted flight pairs
€ delay equity weight
¥ cost ratio of airborne delay to departure delay
Decision Variables Tt take-off capacity at vertiport v at time t
:‘;":’“”“"‘? 1: if AAM flight f leaves at departure vertiport by time t. 0: otherwise. Ly landing capacity at vertiport v at time t
we'y ival 1: if AAM flight f arrives at destination vertiport by time t. 0: otherwise. M throughput capacity at corridor k
wf,’f 1: if AAM flight f arrives at corridor k by time t. 0: otherwise. By, ra110 of the conﬂfct regfon:s start pc‘nnt “.fl[t..lln CDrljldl)rlf relaFwe tolns full length, for f?1ght f
X Binary variable, where ¢ = (m,n,i,j) € S. X. = 1 if AAM flight m exits conflicted corridor i before AAM Efi ratio of the conflict region’s end point within corridor i relative to its full length, for flight f
flight n enters conflicted corridor j. Otherwise, (.
Xe Binary variable, where ¢ = (m.n,i,j) € 8. x. = 1 if AAM flight n exits conflicted corridor j before AAM

flight m enters conflicted corridor i. Otherwise, 0.




MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Cost Ratio of Airborne

to Departure Delay Equity of Assigning Departure Time

Minimize Z Z ME (warnval _ wc;rtrnl)al))
fey \1€0 Actual Departure

_ Z (_ 1) @E ( departure —w

departure))
t€0  Service Priority ActuaIArr|vaI
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(vr -

qarrival _
Z W

Dlwh, —wEh <My VfeF, VkeCUDUA

dr: rarture
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Centralized AAM Traffic Management Formulation

[ [ +I i+1 [
Z'r'(""-;n,!_w:n,!—l}-'-(Zr.( Vimat :nr I}_ZI (“mr m; - Emi s
10 ts0 el
i J+] _;+|
EM‘(I—XC]‘FZFA(H‘HJ :1“‘(2" (wy, HH)—Z:r (v,“ m |)'B"J
ted ted ted

V(im,n,i,jl=c; €€

g+l J-l-] i
Zr.( v r” I)+(Zr (wy, — W1 —Zf-(nn_r— Vot I) En i+t
10 ted 10
EM‘(I—_rt.)+Zr-(w;n,,— Wi e—1) + Zi‘ (w‘”— 'n:'! )= Zr (Wi, —w ma_1) | Bm.i
10 e ted
V(im,ni,jl=c; €€
XNe+x.=1
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Centralized AAM Traffic Management Formulation
Minimize Z {Z (?, S Sfe (I _ af)1+e (warnval _ wc}zcr:-n{al))
feF teO
l+€ departure departure
(=1 a—dpte o -yl ))}
te0Q '
subject to Time-dependent TLOF Capacity Constraints Temporal Conflict Resolution Constraints
Z(ud”’“”"n - ;“:J_‘;rmm) <Thh,: VfeF., YweV Z r- (“{n,! - wfn,!—l} + [Z r- (Wt - ::arlr )= Z £ (Wi = J;nr |)] m,i +1s
10 ts0 el

Z(w}{{:imf ann‘”} <L, N, . h " <M-(1-X.)+ Zr‘ (wf;l‘; r 1}+ (Zf I:H»‘H] i+‘.l ]] _ Zr (Vrn; ,.” | ) Bn,j
by COI’I’Id?I’T roug !out T ) te0

Z(“”? W <M ViEF, VkeCUDUA Capacity Constraint V(m,n,i,j)=ci €€

0 AAM Vehicle-type Speed Constraints

Y N _ koK . X . . .
;gf-(nfj 1+f‘r_|} ”EZ()? (W, Hf-‘r_])zfj,k VfeF, Yk, K eCUDUA Zr (w HJ_ r” I:H_(ZI (H;ful fu]—l)_zf'(w{r.r_ vl | En+s
Z v y Z . . 10 ted 10
r: (wf,r - Wf.r—l} - t- (“"f',r - W}'.r—]:I S Ufk , .
teQ te0 EM‘(I—_rt.)+Zr-(w;n,,— Wi e—1) + Zi‘ (w‘”— 'n:'! )= Zr (umr— m? D B
10 te0 e
H‘j-.‘,_l —Wji-‘r =0 Vf EF, YkeCUDUA, VreO me!u,’f‘j)=c‘- Y
Corridor Confinement Constraints
Ywh, =21 YfeF, VkeCUDUA Xe+x: =1

ted

few }"j"”"””‘ >dy VYfeF, departurec D, YreO | Assigned Departure Time constraint
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Centralized AAM Traffic Management Solutions

213 006

# of AAM: 3 # of Spatial conflict: 3 # of AAM: 3 # of Spatial conflict: 3
140 1§ Path 1 10.0 A .
i
120 - 7.5 1 i
Path 1: 159.3 km +
100 - i Path 2:160.1 km ) A i
= sy e >\ Path 3: 84.7 km ath 1 i
80 - ' - . . i —S
Same Vehicle Type : |
Min. speed: 230 km/hr | | ?
9 Max. speed: 300 km/hr N :
40 |
—5.0 1 |
20 7 -7.5 ¢
F'gth 2’ | | | | | Path 2
20 0 20 40 60 80 100 5 0 ] 5 10
Multiple Corridor structure Bi-Directional Multiple Corridor structure

(Vertical multi-lane corridor with capacity 1)
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Distributed AAM Traffic Management

Decision Variables

br;  bargained entry/ exit transition time of AAM flight fin PSU i

yfc - payoff € [0, 1] of AAM flight f traveling through conflicted PSUs i and j

P payoff € [0, 1] of AAM flight f entering/ exiting PSU i

Parameters

n; negotiable bargain power of PSU i during flight operation time window O
tf.i optimal entry/ exit time of AAM flight f in PSU i from low-level MIP

(’5{ i time difference between an AAM flight f’s optimal departure from PSU i and its optimal arrival at adjacent
PSU j, where PSUs i and j are in conflict

Pr transition pseudo-vertiport(s) for flight f

¢r,i total number of corridors AAM flight f travels through inside PSU i
T; total number of transition corridors in PSU i

S total number of spatially conflicted flight paths inside PSU i

Bi-3  bargain parameter weight factors for ¢ ;, .7;, .7;
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Methods and Algorithms
Key Objectives: Game Theoretic Approach
1. PSU Airspace Sectorization
Game Type Objective Decision-Making Approach Example
2. Corridor-based Route Planning Maximize total system Collaborative decisions to PSUs forming a
Cooperative throughput optimize corridor usage and coalition for joint
3. AAM Traffic Flow Management in Single (Centralized) PSU Setting Minimize overall air delay airspace efficiency optimization
Non- throughput each PSU, optimizing for airspace without
Cooperative Minimize its own airspace individual goals coordination

delay
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Distributed AAM Traffic Management Formulation

Cooperative Nash Bargain Modified Objective Function
Negotiable bargain power of PSU i Minimize Z {Z (}’ csp-(t—ap)'te- [w;.";""'ﬂf — w;,r_-!r_f?af))
N AAM traffic densit feF lte0
1 Y,
= ﬁl . Z ?}fvfl_ +ﬁ2 ‘+ﬁ3 . -,/‘_ # Of transition CorridOFS, 1 / departure departure
=1L . . - —1)-s¢-(t=dg)-(w, -—w,
! # of spatial conflicts ;;. (h’ )-8t =dp)-(wg, Wii-1 J)
3
Z Bi=1, 0 << 1
i=1 Weight factors Additional Constraint
Py Pr L
Transition time equity function Wibra ¥ Webpi-1 =

Maximize . (i.e., “utility function”)

subjectto n; >n; Yfe¥F, V[conflicted PSU pair (i,j)] .
; ; Relaxed Constraint

Ui(y; )=1-y;,

: t Wdeparture

W >dy VfeF, departurec D, VteO

R

'

Uj {}'{_lj) = (‘{j)

% Negotiable bargaining power of PSUs varies
L‘ with each operational time window
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Simulation Analysis

150 Flights 300 Flights
- Percentage of Delayed Flights for 150 Flights 2 Percentage of Delayed Flights for 300 Flights
: BN Centralized : BN Centralized
| Distributed | Distributed
25 : 25 1 :
W - W ~ (yl H
g i £ 1% increase T
o i ) @ - >
w204 ! w204 !
D | 7 3 : J‘
) | ” 2 |
3 15 i -~ 8 15 i
1 ~ . 1 I
5 0.3% increase -~ 5 |
v > ~ . W
= @ : 10% increase 2 :
§ 10 - i § 10 4 i
g | g :
5 1 | 5 1 |
1 I
I I
I I
I I
0- L . 0- L .
Centralized Distributed Centralized Distributed

% Distributed AAM traffic management solution remains largely unaffected by its sub-
< optimality after cooperative negotiation among conflicting PSUs




M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN
Slide 36

150 Flights 300 Flights

Average Ground and Airborne Delays: 150 Flights L8 Average Ground and Airborne Delays: 300 Flights
1.8 .
| —
} 1 _
1.6 - 1.6 - )
T 1 _ LR _
o I
1.4 1 | o T Departure Delay (GD) 1.4 1 ! T
= : 3 cCentralized = :
S 121 : =3 PSU0 2 124 116 | 1.14
g 110 I 1.08 105 = PsU_l E I 1.08
I : i
E 10/ i 0.98 1.00 1 PSU_2 E . ol , 1.00 mE_
= | [ pPsu_3 = !
w 1 a 1
O 0.8 1 1 O 0.8 4 1
Z, 1 : 1 1 Airborne Delay (AD) % : 1
E 0.6 - - 4 _ EEm Centralized 5 0.6 4 1 H AL - T
3 1 R N PSU_D e | .
]
i 1 0.39 El PSU_1 0.4 - I 0.41
0.4 : 0.34 - PsU 2 ' i -
: —r 0.2 : 0.17
0.2 - .2 .
] 0.14 0.15 | : 0.11
0.01 0.03
0.0 - Jooy . 0.0 . L .
Centralized PSU_0 PSU_1 PSU_2 PSU_3 Centralized PSU_0 PSU_1 PSU_2 PSU_3
Average Delay / Flight Average Delay / Flight

% - As the number of AAM flight increases, more ground & airborne delays are observed

- Distributed system did not incur significantly greater delay than the centralized system
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Average Runtime of Centralized System: Number of Flights vs. Runtime

Simulation Analysis

257 21/99
1
£ /’
- ’
v /
£ 15 -
E 12.12,7
c '
é rd
@
E‘ 10 n ,/’
g e
< ,’

375 .7
5 - -
1.29 .
0.19 e
0l —me=---"100
30 90 150 240 300

ﬁ Scalability:

computation time has cubic increase for centralized system

Number of Flights
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